
liquid and considering the latter to be Newtonian, we use overstated theoretical values of 
its flow velocity in microcapillaries. In actuality, the "equivalent" viscosity of such a 
liquid in microcapillaries is higher than handbook values of its shear viscosity [2]. As a 
result, despite the fact that ~mp is determined not only by the linear velocity but also by 
microrotation, their total contribution to ~ mp is less than ~n, which is determined only by 
the linear-velocity gradient -- since the theoretical values of the latter are higher than 
the actual values. 

Consequently, allowing for the natural rotations of particles of a micropolar liquid 
leads to a substantial (with corresponding values of the microstructural parameters k and 
~o, as well as ~) reduction in the theoretical values of its dissipative heating in the re- 
gion of stabilized heat exchange. 

NOTATION 

2h, distance between plates; dp/dx, pressure gradient; v x and 9z, components of the vel- 
ocity and microrotation vectors; ~, K, 8, and y, material constants of the micropolar liquid; 
e, boundary-condition parameter; ~, dissipative function; tkZ , stress tensor; mkZ , micro- 
moments tensor; A t and %q, thermal conductivities of the materials of the channel and liquid; 
T, temperature; H, and H2, thicknesses of channel walls; Tc, temperature of outside surfaces 
of channel; erkZ, antisymmetric tensor; ~ = (1/2) rot ~, vorticity vector. 
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THERMAL INTERACTION BETWEEN A PIPELINE AND THE SURROUNDING FROZEN GROUND 

I. Ya. Brekhman and B. A. Krasovitskii UDC 532.542:624.139 

A method is proposed for computing heat-transfer processes of pipelines and other 
engineering structures with finely dispersed frozen ground. 

The exploitation of pipelines under low-temperature conditions of the surrounding ground 
is fraught with numerous complications. Reduction of the temperature of the product being 
transported can result in elevation of its viscosity (for oil), formation of ice (for water), 
and hydrated locks (for gases). Warming up the surrounding ground results in disturbance of 
its stability and, as aresult, in pipeline buckling and undesirable ecological consequences. 
The most unfavorable are the pipeline exploitation conditions during its startup, when therm- 
al losses are especially large. This same period is most complex from the viewpoint of the 
methodology of thermal design since nonstationary effects must be taken into account. These 
complexities grow significantly when the pipeline is in finely dispersed soils in which the 
phase transitions extend into the temperature spectrum. 

Features of the thermal interaction between a pipeline and finely dispersed frozen soil 
are analyzed in this paper. 
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The process of starting to exploit a pipeline is examined. The ground in which the 
pipeline is laid is in the frozen state up to the starting time. We neglect the presence of 
snow cover on the ground surface. If necessary, its influence can be taken into account by 
using the method of the "additional layer." The temperature of the liquidin the pipeline 
is assumed constant and positive. We write the heat-conductlon problem for the surrounding 
finely dispersed ground by assuming that all the interstitial llquld is connected, undergo- 
ing phase transitions according to a known law in the negative temperature spectrum [1, 2]: 

% c o - t =  dw,, . 
do ' 

o = T.Cy, ( 2 )  

ao I =a(O--  Ta)~ ~ ; (3)  7~ 
Oy ; '=o  = 

;~ = r  -- To)~fR. ; (4)  
7fRo 

o Iz..= = ?. ('y, '~); ( 5 )  

o 17.| = r. ( 6 )  

Here W is the relative weighted iciness of the ground [3], which can be described by the fol- 
lowing dependence [4] : 

O, O > O, 
= 1 ; 8~< O ;  (7)  w 1.-,4-----ff 

is the total moisture [3]; Cef is the effective specific heat of the ground with the effect 
of molecular heating (cooling) and liberation (absorption) of the latent heat of the phase 
transitions. The magnitude of the parameter A characterizes the shape of the iciness curve 
and is determined by the type of ground and the moisture. The thermophysical characteristics 
of the soil vary with temperature mainly because of the change in iciness: 

= ~t + (Z.f -- ~0 W; c = ~ + @f - -  c~ W. (8) 

For simplicity, the linear dependence of I andc on the iciness is taken here for bound- 
ary values corresponding to the frozen and thawed states of the ground. Only conductive heat 
transport is taken into account in the system (1)-(8). We neglect the effects of migration 
of the interstitial liquid and vapor. 

As an analysis of the solutionof the corresponding problem wlthout phaaetransitions 
shows [5, 6],during the considerable time interval from the time of plpeline startup, the 
solution of this problamdiffers sllghtly from the axisymmetrlc case. This is explained by 
the fact that the influence of the daytime surface on the heat-transfer process starts to be 
felt substantially after a certain time associated with the time of thermal perturbation pass- 
age from the pipeline to the daytime surface. This circumstance permits considering the solu- 
tion of the axisymmetric problem as the standard, close to the solutionof the two-dlmenslonal 
problem in the initial time interval. 

Meanwhile, an algorithm of the numerical solution has been worked up for one-dlmensional 
axisymmetric and plane-parallelproblems, which was later applied to the solution of the two- 
dimensional problem. This is caused, firstly, by the great simplicity of the one-dimenslonal 
problems and, secondly, by the existence of exact and approximate solutions in a number of 
cases, with which the obtained results are compared. 

The heat-conductlon problem in soll has the following form in an aXisymmetric formula- 
tion: 
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Fig. I. Dependence of the Kirpichev criterion Ki on time for axisymmetric 
(a) and plane-parallel (b) problems. Stefan problem (I); A = 0.5, m = 
0.208 (2); A = 4.5, ~ : 0.208 (4); A = 0.5, ~re = 0.208 (3); A = 4.5, ~re = 
0.208 (5); T, h. 

ao 1 a (k ao--~---); R o < r - < o o ;  PC~ a~ = /" Or (9) 

X a8 I;-= 
_ - = = (0  -- To)F=Ro; (10) 

Or Ro 
0 L~=,o = Tn (H ,  To) = Tf . ( 1 1 )  

To obtain the numerical solution of this problem, we go from the semiinfinite domain of de- 
finition [Re, ~) to the finite domain [i, 0] by using a transformation of the independent 
variable: 

: Ro/~ (12) 
This substitution reduces the problem (9)-(11) to the following: 

k ao [ 
" = ~ (To - -  0)~=1; ( 1 4 )  

Ro a~ ~=l 

o ~=~~176 = ~ �9 (15 )  

which is replaced by a system of finite-difference equations whose solution is sought by the 
method of factorization. 

The algorithm obtained as the result was realized on an ECLIPSE C/300 computer for 
which a program was compiled in the algorithmic language FORTRAN V. Computations were per- 
formed for the following initial data: Tf = --I~ To = 25=C, %t = 1.54 kcal/(m.h.deg), %f = 
1.8 kcal/(m.h-deg), A = 0.5 deg -I and 4.5 deg -I, I = 80 kcal/kg, c t = 0.442 kcal/(kg.deg), 
cf = 0.44 kcal/(kg,deg), Re = 0.14 m, ~ = 6.05 kcal/(m2-h.deg), and ~ = 0.208. The value 
A = 0.5 corresponds to clayey soil, and A = 4.5 to sand. 

We analyze the results of the computations by the magnitude of the Kirpichev criterion 

2~ 

1 S R ao d(p, (16) Ki=-- 2~(To--Tf) o ~  7-=ao 
0 

which is governing in the computation of the pipeline temperature regime since it character- 
izes the heat losses in the soil. 

Graphs of the dependence Ki(T) are presented in Fig. la for two considered values of A 
corresponding to soils of different disperseness. The dependence Ki(T) is represented in 
this same figure for the case A = ~ (Stefan problem) obtained by reducing the initial problem 
to a system of integral equations [7, 8]. 
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Change in the zeroth isotherm coordinate with time for the axi- 
Notation the same as in 

Curves of S(T), the coordinates of the zeroth isotherm, computed for the cases considered, 
are represented in Fig. 2a. 

As is seen from Figs. la and 2a, for an identical total moisture the function KI(T) dim- 
inishes while the function S(~) grows more rapidlyfor soils with a smaller value of the 
parameter A (i.e., with a more diffuse iciness spectrum). Curves corresponding to the Stefan 
problem (A = ~) correspond to the same dimenslonality. Let us note the following circum- 
stance. Soils of different disperseness have a different initial relative iciness for an 
identical initial temperature Tf: 

I 
Wf = I I - - A T {  (17) 

Consequently, for an identical total moisture ~ their ice content (i.e., the Ice mass per 
unit volume of soil) is different at the initial instant. Moreover, the change in the ice 
content for an identical change in temperature is also different. 

Taking into account the fact that the main contribution to the effective specific heat 
of the soll is the heat of the Ice-water phase transition, the difference between the curves 
KI(T) and S(T) described above can be explained by the difference in the effective specific 
heats of the soils of different dlsperseness for an identical total moisture. 

Let us introduce the concept of reduced moisture ~re, the moistureunder Stefan problem 
conditions that will assure the same heat transfer characteristics as in the problem with a 
spectrum of a phase transition with the moisture ~. The relationship between these quantities 
under axisymmetrlc problem conditions will be sought from the following integral equality: 

To To 

.[ ( t o -  r ) e r  = j" (to - r ) d r  
0 0 

0 

q- r!' (o (Wf -- W) (To - -  T) dT. 

It is an approximate expression of the condition of an identical change in the ice content 
for the Stefan problem and the problem with a phase-transitlon spectrum. The factors (To -- T) 
are added to the integrand to take account of the axlsymmetry of the temperature field. 

We hence obtain 

1--AT~ q - ' ~  To-- In(l-- A T f ) - - T f  . (18) 

In particular, ~re = ~ for the Stefan problem. 

Curves of Ki(~) and S(r) are presented in Figs. la and 2a for soils with parameters A = 
0.5 and 4.5 of the iciness spectrum and moistures assuring a value ~re = 0.208 for the re- 
duced moistures. As is seen from these figures, the identical values of the reduced moistures 
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assure the practical merger of these curves with each other and with the curves for the 
Stefan problem. Analogous features are also traced in the solution of the one-dimensional 
plane-parallel problem. Let us examine it in the following formulation: 

00 0 i % ~ ) ,  0 ~ < o o ;  (19) 

O 17=o = To; (20) 

0 I,=o = ~ - (21) 

Results of a numerical solution of this problem are represented in Figs. ib and 2b for 
values of the parameter A = 0.5 and 4.5 and the total moisture m = 0.208. Also presented 
here are data for the exact solution of this problem for A = ~ (Stefan problem) [9]. As is 
seen from the graphs, the thermal fluxes and coordinates of the zeroth isotherm are related 
for different A exactly as in the axisymmetric problem. 

We seek the magnitude of the reduced moisture from the relation 

To Te 0 

We hence obtain for the plane-parallel case 

To  (1--ATf~ + ATo 

The r e s u l t s  of computing the h e a t - t r a n s f e r  parameters of s o i l s  with d i f f e r e n t  d i s p e r s e -  
ness and i d e n t i c a l  reduced mois ture  (~re = 0.208),  r ep resen ted  in Figs.  lb and 2b, are  prac-  
t i c a l l y  c o i n c i d e n t .  

Therefore, solutions of the Stefan problem can be used to compute heat-transfer pro- 
cesses for pipelinesand other engineering structures with frozen finely dispersed soils by 
replacing the true by the reduced moisture in the initial data. This circumstance consider- 
ably facilitates the computation since a significant number of approximate analytic methods 
exist for solving the Stefan problem, which are used successfully in design and research 
practice. 

On the other hand, realization of the numerical solution of the problem with a phase- 
transition spectrum is simpler than the Stefan problem. This is associated with the fact 
that the effective specific heat becomes infinite in the latter at the phase transition tem- 
perature, while the thermophysical characteristics undergo a discontinuity. 

Let us turn to the two-dimensional problem (1)-(6). Following [6, i0], we apply the 
following conformal mapping for its numerical solution: 

x+ iy = Rocj cth ( ~oxl + ax2i ) 2 " (23) 

Here Co = hf~ -- i, So = in (h + co), h = H/Ro. This transformation reduces problem (1)-(6) 
to the following form: 

O0 + [  1 0 /)~ 0O k 1 0 (X O-~xO, ) ] (24) 
OX, I v ; j )  + 7 -  o,, ' 

O ~ x ~  1; O~-~x~ 1; 

c)O _ o;czoRoco(To--O ) for x~= 1; (25) 
Oxl h - -  cos (~x2) 

~, _ 00 = ~a~oRoCo ( 0 - - T a )  
for xl = 0; 

Ox 1 1 --  cos (ax2) (26) 

00 -0 for [ x ~ = O ;  

Ox2 t x~---- 1; 
(27) 
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Here 

O=Te ~r ~ = % .  (28) 

[ch  (aoXi) - -  cos  (ux~)] 2 " 

Problem (24)-(28) was solved by using a locally one-dimensional difference scheme [ii, 
12]. In conformity with this method, the two-dimensional equation (24) is separated into 
two one-dimensional equations 

p~f or1 1 a [~ oo~ 
2 a~ Roa~ axl ~ axl ] (29) 

oaf = 1 _ ! _ _  o_2_ oo, 
2 & R~a~2 ax~ ~, axe. ]" 

The boundary conditions on the functions v~ and va are" 

~, Ov~ = ==oRoC. (7"o-- vl) 
for x ~ = l ;  

ax~ h - -  cos (nx2) 

----- , for x ~  = O; 
Oxl 1 - -  cos  (nx~) 

or2 = o  for X 2 =  O; 

OX2 X2 = 1. 

(3o) 

(3l) 

( 3 2 )  

(33) 

The system is integrated in each spacing in time (T J, 
conditions- 

v~ (xi, x~, "d)= 0 (x~, x2, "~0; 

v~ (xa, x2, ~ i ) =  Vl(X~, x~. ~i+~); 

0 (x~, x~, ~ m ) =  v~ (x~, x~, ~i+ 9. 

T j+*) under the following initial 

(34) 

(3.=,) 

(36) 
The thermal interaction of a pipeline with the surrounding frozen soil was computed from 

the algorithm elucidated for H = 1.9 m and Ro = 0.216 m. The thermophysical contents were as- 
sumed the same as for the axisymmetric problem. 

As follows from the results of the computations, during a long period after startup, the 
magnitudes of the thermal fluxes on the tube wall Ki(~) are practically coincident for the 
two-dimensional and the axisymmetric problems. Thus, in the problem considered, a substan- 
tial difference from the axisymmetric solution starts only for T = 1200 h, i.e., after 50 
days. Such a nature of the function Ki(z) permits application of a method analogous to one 
proposed earlier for a single-phase problem [5]: 

eo ' ( T o - - ~ ) ( l n S + l / e t )  

for its solution. Here the quantity S is determined in conformity with [13] for the total 
moisture value ~ = mre, at = Ro~/Xt, i.e., in the initial period the quantity Ki is found 
by one of the approximate methods for the axisymmetric two-phase problem (in this case, in 
conformity with [13]), and later, after the solution emerges at a value determined for the 
stationary regime by the Forschheimer formula, is taken equal to the corresponding expression. 

In conclusion, we examine the method of selecting the spacing of the spatial partition 
for the numerical integration of (13). In order to select the optimal partition spacing of 
the domain of definition of the independent variable ~ [0, I], a numerical experiment was per- 
formed. The problem was solved here for a different quantity of partition points, from 50 to 
i000. It was finally obtained that the results are stabilized for N = 500. At the same time, 
a number of partitions N = 50 assures sufficient accuracy for an analogous single-phase prob- 
lem. So abrupt an increase in the necessary number of partltionsin the case of the two-phase 
problem is explained by the fact that the effective specific heat grows sharply in the domain 
of liberation (absorption) of the heat of phase transition. 
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Taking into account the fact that an abrupt growth in the effective specific heat is 
localized in a narrow zone of negative temperatures near the zeroth isotherm, it is expedi- 
ent to use a shallow step in space only within the limits of this zone. This permits a sig- 
nificant diminution in the dimensionality of the arrays utilized and an increase in the com- 
putation rate, which is especially valuable under multidimensional problem conditions. It 
should be noted that, however, computational difficulties associated with the appearance of 
a moving zone of condensation of the spatial partition points grow here. 

The spatial partition in the square [0 < xl < i; 0 < x2 < i] was selected in the program 
described above for the solution of the two-dimensionalprobl~m, from the following considera- 
tions. The nature of the temperature fields vz and v2 into which the initial temperature 
field is divided under the conditions of a locally one-dimensional scheme is substantially 
distinct. The function v~ is characterized by significant gradients and is qualitatively 
similar to the temperature distribution for the axisymmetric problem. The function v2 is the 
correction for nonaxial symmetry of the temperature field and is characterized by small gradi- 
ents. 

Taking this into account, the partitioning along the x~ axis was executed analogously 
to the axisymmetric problem with condensation in the zone of intensive phase transitions, and 
with a uniform coarse spacing along the x2 axis. Such a method permits the reduction of the 
dimensionality of two-dimensional arrays with 500 x 500 to 70 x 50 (if a uniform partition 
were executed with a spacing to assure the necessary accuracy). 

NOTATION 

p, soil density; Cef , effectiveheat conduction; c t and cf, specific heats of the thawed 
and frozen soil; T, time coordinate; x and y, space coordinates; H, depth of pipeline axis 
location; l, heat of the phase transition; ~t and Xf, heat-conduction coefficients of the 
thawed and frozen soil; am, heat-transfer coefficient from the soil surface in air; ~, heat- 
transfer coefficient from the liquid to the surrounding soil; Ta, air temperature; To, prod- 
uct temperature; Tn, natural soil temperature; Tf, initial (frozen) soil temperature; A, 
parameter of the iciness spectrum; Ro, radius of the outer pipeline surface; Ki, Kirpichev 
criterion; S, dimensionless radius of the phase transition front. 
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